Schiebel Aircraft and Areté Associates, successfully showcased the CAMCOPTER S-100 Unmanned Air System (UAS) combined with Areté’s Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) sensor to the US Navy’s Office of Naval Research (ONR). In a combined demonstration sponsored by the US Office of Naval Research (ONR) on a commercial vessel off the coast of Pensacola, Florida, Schiebel and Areté demonstrated the CAMCOPTER S-100 and its capabilities, as well as Areté’s Push-broom Imaging Lidar for Littoral Surveillance (PILLS) system.
PILLS enables hydrographic mapping of ocean littoral spaces with a low size, weight, and power (SWaP) sensor that easily integrates into the S-100. PILLS has multiple military and commercial applications. Hans Georg Schiebel, chairman of the Schiebel Group, said: “We are proud that we could successfully showcase the outstanding capabilities and data-gathering features of our CAMCOPTER S-100 to the US Navy. Globally, we operate extensively on land and at sea and we are confident that our unmanned solution is also the right fit for the US Navy.”
Schiebel’s CAMCOPTER S-100 Unmanned Air System (UAS) is an operationally proven capability for military and civilian applications. The Vertical Takeoff and Landing (VTOL) UAS requires no prepared area or supporting equipment to enable launch and recovery. It operates by day and by night, under adverse weather conditions, with a beyond line-of-sight capability out to 200 km / 108 nm, over land and sea. Its carbon fibre and titanium fuselage provides capacity for a wide range of payload/endurance combinations up to a service ceiling of 5,500 m / 18,000 ft. In a typical configuration, the CAMCOPTER S-100 carries a 34-kg / 75-lbs payload up to 10 hours and is powered with AVGas or JP-5 heavy fuel. High-definition payload imagery is transmitted to the control station in real time. In addition to its standard GPS waypoint or manual navigation, the S-100 can successfully operate in environments where GPS is not available, with missions planned and controlled via a simple point-and-click graphical user interface.